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Abstract

A novel method for two-dimensional curve normalization
with respect to affine transformations is presented in this paper,
allowing an affine-invariant curve representation to be obtained
without any actual loss of information on the original curve. It
can be applied as a pre-processing step to any shape
representation, classification, recognition or retrieval technique,
since it effectively decouples the problem of affine-invariant
description from feature extraction and pattern matching.
Curves estimated from object contours are first modeled by
cubic B-splines and then normalized in several steps in order to
eliminate translation, scaling, skew, starting point, rotation and
reflection transformations, based on a combination of curve
features including moments and Fourier descriptors.

1. Introduction

Due to the recent growth of interest in multimedia
applications, an increasing demand has emerged for efficient
storage, management, browsing and content-based retrieval in
multimedia databases [1]. In this context, content information in
is usually modeled in terms of low-level features such as color,
texture, motion and shape. As observed in [7], it is natural to
retain only the object boundary if it contains the main
information for description — for example, in classification of
silhouettes of airplanes, or in character recognition. The study of
shape for general object description is currently an active field of
research, mainly because (i) shape can provide a powerful tool
for visual image retrieval, by means of a query-by-sketch
mechanism [3], and (ii) content-based functionalities will be
embedded in new multimedia coding standards [5], employing
second-generation, shape-based coding techniques [6].

Several methods have been proposed in the literature for
shape analysis, modeling and representation, ranging from chain
coding and polygonal approximation to B-splines [4] and Fourier
descriptors [7]. Most approaches face the problem of drastic
shape changes due to viewpoint (perspective) transformations,
which can be well approximated by affine transformations when
objects are far from the camera. Several affine invariant
techniques have thus been proposed; in most of them, however,
invariance is ‘embedded’ in the process of matching,
recognition, or similarity measure estimation. For example,
affine invariant shape features and similarity measures can be
employed [8], with the main disadvantage that most information
about the original curve is lost. An alternative is to match two
given curves by optimally evaluating their affine parameters [7],
with the disadvantage of high computational cost and the
requirement of a priori knowledge of both shape instances.

To this end, a novel method for two-dimensional curve
normalization with respect to affine transformations is presented,
making it possible to obtain an affine-invariant curve
representation without any actual loss of information. Curve

shapes are normalized to a ‘standard’ position, defined in such a
way that all affine transformations of the same object are also
normalized to the same position; apart from the affine
transformation parameters, no other information is discarded.
Hence, the proposed method can be applied as a pre-processing
step to any shape representation, classification or recognition
technique (e.g., shape matching using deformable templates [3]),
since it decouples affine-invariant description from feature
extraction and pattern matching.

In particular, a closed curve representing the contour shape
of an object is first modeled by a cubic B-spline so that the shape
is simplified, segmentation noise is reduced, and uniform curve
sampling in terms of arc length is obtained. Then, the sampled
curve is normalized in several steps in order to eliminate
translation, scaling, skew, starting point, rotation and reflection
transformations. Normalization is based on a combination of
curve features including moments and Fourier descriptors. All
such features are globally estimated from all curve samples; no
local information is used. The computational complexity
involved is negligible, so that the method can be easily
integrated in a real-time image retrieval or video coding system.

2. B-Spline Curve Modeling

In the following, it is assumed that the contour shape of an
object is available and represented by a set of ordered points
forming a two-dimensional, planar and closed curve obtained
from image data by means of manual or automatic segmentation.
The M-RSST color segmentation algorithm [1] was actually
used in our experiments, combined with motion segmentation in
the case of video sequences. Since discretization is involved in
the segmentation process, leading to segmentation noise and
non-uniform sampling in terms of arc length, a B-spline curve
model is employed. B-splines have been widely employed for
shape analysis and modeling, since they possess a number of
important properties such as smoothness and continuity, built-in
boundedness and local controllability [4].

Cubic B-splines are composite curves consisting of a large
generally number of connected curve segments with C
continuity on the connection points. Each segment is a linear
combination of four cubic polynomials, commonly known as
basis functions. The whole B-spline is characterized by a number
of control points, equal to the number of curve segments. Given
a set of data curve points, obtained from segmentation, the
control points are determined by fitting the B-spline to the data
points in a MMSE sense. Since in general different sets of
control points may describe the same curve, the knot points,
defined as the connection points between curve segments, are
derived from a linear combination of the estimated control
points. Finally, in order to achieve uniform sampling in terms of
arc length, an appropriate parametric value is obtained using the
chord length (CL) method [4], based on the fact that the chord
length between any two points is a very close approximation to



the arc length; knot points are re-allocated with equal spacing in
terms of the estimated parametric value.

3. Curve Orthogonalization

A curve orthogonalization procedure is employed as the first
stage of normalization, effectively normalizing a curve with
respect to possible translation, skew and scaling and reducing
affine transformations to orthogonal ones. Let s; = [x; »,]7, i =
0,1,..., N-1, be N curve points obtained through B-spline
modeling. A 2xN matrix notation s = [sg §; ... Sy.1] is used to
represent the points, while their horizontal and vertical
coordinates are represented by x = [xo x| ... xy1] and y = [yo 11
... ¥n.1]- The (p,q)-order moments
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1
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of order up to 2 are used for the construction of the normalized
curve n,(s). The procedure comprises a set of linear operations —
translation, scaling and rotation. First, the center-of-gravity of
the curve is normalized so as to coincide with the origin:

X| =Xy, Y=Y ~H, @)
where 1, = m(8), 1, = mo(s). The curve is then scaled so that its
2"_order moments become equal to 1:

Xy =0,X;, Yy =0,)Y; ©)

where o, =1/1/m20(sl) . Oy, =1/«/m02(sl). A counter-

clockwise rotation by 6, = n/4 follows:

1 [X2-Y>
" V2 [ X4y,
Finally, the curve is scaled again, exactly as in (3):
Xy =T,X3, Y4=7,¥3 )

where 7, = 1/1/m20 (s3), 7, = l/ﬁlmoz (s3) . The normalized

curve n,(s) = s4 can also be written as
n,(8) = N(s)(s — u(s)) (©)
where u(s) = [myo(s) moi(s)]” and N(s) denotes the 2x2

normalization matrix of s. It can proved [2] that the normalized
curve #,(s) always has the following properties:

myo(n,(8)) = my; (n,(8)) = my;(n,(s)) =0 (72)

My (1, (8)) = mg, (n,(s)) =1 (7b)
Moreover, the above conditions can only be achieved if the
rotation angle used in (4) is equal to kn/2 + w/4, keZ. The term
orthogonalization is justified since these conditions are
equivalent to n,(s)(n,(s))” = I. Let us now consider two curves s,
s’ related through an affine transformation:

x' a bllx t,
s'=As+t= = + (8)
MERMINEH

where matrix A is assumed to be of full rank. Then,
s;=s"—u(s")=A(—u(s))=As;, and
removed. Moreover, when a normalized curve is rotated or
reflected, in which case A is orthogonal, it remains normalized.
Inversely, if both curves are normalized, then A should be
orthogonal. It is thus shown in [2] that there exists an orthogonal
2x2 matrix Q such that

translation s

n,(s)=Qn,(s) ©)
Affine transformations are reduced to orthogonal ones that may
contain only rotation and/or reflection; hence, normalized curves
are invariant to translation, scaling and skew transformations.
Note that normalization is performed without knowledge of the
affine parameters A, t, and without one-to-one matching between
curves s and §’. Furthermore, it can be seen that the set of
transformation parameters {u,, u,, 0,, 0,, T,, 7,} along with n,(s)
contain all information about the original curve s.

4. Starting Point Normalization

Starting point normalization for closed curves is applied at
this point; rotation and reflection normalization follows since it
depends on the starting point. Both normalizations are based on
the discrete Fourier transform instead of curve moments. The
complex vector notation z = x+jy = [z z; ... zy.]" is thus used
for curve representation, where z; = x; +jy; , i = 0,1,...,N-1,
denotes a single curve point. The DFT u = 3(z) of curve z is

given by
N-1 ]

0, =Zziw_k’, k=0,,.,N-1 (10)
i=0

where w = e 2™V so that w™N =1,

l € Z. Employing the
primary argument, or phase a, = Argu, we construct the
phase vector a=Argu=[a, a,---ay_;]. Consider now a
second curve z' =[z( z|---zy_;] that is circularly shifted with
respect to z by m samples, where me {0,1,...,N-1}:

2'=8,(2): 2, = Zimymoan»> i=00...,N—1 (11)
Then it can be shown that u) = kauk ,k=0,1,....N-1, or

a, =(a, +27km/N)mod 2z, k=0,,...,N -1 (12)

Based on this property, we define a standard circular shift using
the first and last Fourier phases:

N
p(z):L‘—(al _aN_l)J mod N /2 (13)
T
and apply the opposite shift to normalize the curve:
np(z):S—p(z)(Z) (14)

It is shown in [2] that the above normalization is invariant to
starting point, except for an ambiguity in the standard circular
shift, which may cause an extra shift of N/2:

p(')=(p(z) +m)mod N /2 (15a)
p(n,(2))=pn,(z)=0 (15b)

, n,(z), 0< p(z)+m<N/2
()= {SN/Q(np(z)), N/2<p@) +m<N

The proposed selection of Fourier coefficients u; and uy.; can
detect reflectional curve symmetries and has also been employed
in [7] for line pattern curves (e.g. character boundaries), while
the use of other coefficients is also possible [6][9].

(15¢)

5. Rotation/Reflection Normalization
Rotation normalization is achieved by setting the phases of
u, and uy.; to zero, so that they become real and positive. In

particular, assume that two curves s, s’ have been



orthogonalized and normalized w.r.t. starting point, thus
satisfying (9). We then uniquely decompose matrix Q as

a1 9 cosd —sind||s, O
Q{ iy 12}{- } (16)
9 92 sind cos@ || 0 s,

where 6 €[0,7), s, = %1, s, = £1, so that there is one-to-one
relation between rotation/reflection parameters and elements of
Q. Adopting the complex vector notation z, z',
z'=(sxx+jsyy)ef'9 17)
The rotation of curve z is normalized according to the average
value of Fourier phases a; and ay.;:

r(z) = [%(al +ay_ )j mod 7 (18a)

z,=ze 7™ (18b)
Then, horizontal and vertical reflection is normalized according
to the 3"-order moments of z;:
wW(Z)) = v, (2)) + jv,(2,) =sgnm,(z,) + jsgnm, (z,)
(19a)
n.(z) =2, =v, (2)X; + jv,(2))y, (19b)
where sgn denotes the signum function. It is then proved in [2]
that n,(z) is invariant to rotation and reflection transformations:

r(z") = (Ar(z)+6) mod

(20a)
n, (Z') =hn, (Z) (20b)
F(n, () = r(n, () = 0 (20¢)

v (1,(@) = v, (1, (2)) = v, (1, (2)) = v, (1, (2)) = | (200)

where A = s,s, = +1. Note that, as in curve orthogonalization, the
set of parameters {r(z), v(z), v(z)} together with n,(z) contain
all information about the original curve z.

Two final normalization steps are required after rotation and
reflection normalization. First, the starting point ambiguity of
N/2 is resolved by applying an additional circular shift of N/2
samples if the starting point (X, yo) lies to the left of the y-axis,
i.e., Xy < 0; otherwise the normalized curve is left intact. Second,
the curve orientation is normalized to counterclockwise.
Combining all the above results, it can be seen that curve
n(n,(n,(z)) obtained by the entire normalization procedure is
invariant to any affine transformation.

6. Experimental Results

The performance of the proposed algorithm is evaluated
using a shape database created from images and video
sequences. Object contours have been obtained using the M-
RSST color segmentation algorithm with the assistance of
motion segmentation (in the case of video sequences), performed
on the basis of 2-D parametric motion models. In the sequel,
normalization results are given, for all proposed normalization
steps and the algorithm’s efficiency is discussed for affine
transformations of (i) the same object under different, non-
uniform sampling, (i7) similar objects and (7i7) substantially
different objects.

The first case is illustrated in Figure 1. A contour of a fish
consisting of 100 sample points is depicted in Figure 1(a), along
with two other curves obtained through arbitrary affine
transformations under different, non-uniform sampling. The

normalization results are depicted in Figures 1(b,c,d). It can be
seen that the final curves match very well, although
normalization of each curve is performed without knowledge of
the others. The slight discrepancies are due to different
sampling; the match is perfect when the initial curves are affine
transformations of the same sample curve.

(a) (®)

(c) (d)
Figure 1. (a) Original fish contour and a pair of arbitrary
affine transformations under different sampling, (b,c,d)

curves after translation, skew/scaling and rotation
normalization respectively.
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Figure 2. Normalization results for spatially similar object
contours: (a) original contours for 3 distinct planes, (b,c,d)

curves after translation, scaling and rotation normalization
respectively.
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(b)
(©) (d)
Figure 3. Contour alignment for substantially different
objects: (a) original contours of a hammer, a car and a

plane, (b,c,d) curves after translation, scaling and rotation
normalization respectively.



Maybe the most important property of the proposed
approach is its ability to align curves that appear to be spatially
similar. The normalization results for three distinct airplanes are
illustrated in Figure 2, where it can be seen that the proposed
approach achieved successful alignment. These results should be
directly compared to those of Figure 3, where three sample
curves belonging to distinct object classes are employed. The
final curves of Figure 2(d) yield larger resemblance on the basis
of any matching scheme, compared to those of Figure 3(d). The
proposed approach is proved to yield adequate results even in the
presence of significant amount of noise in the employed curves,
as shown in Figure 4.

(a)
Figure 4. Normalization results in the presence of noise: (a)
initial and (b) final curves for spatially relative objects.

Contour 1 Contour 2 Points FD MFD

e W4 001 002 001
s P 019 012 011
o o 075 041 057
s Y 089 062 065
e 076 025 032

Table 1. Indicative contour classification distances.

L

Figure 6. Image retrieval results (query-by-example) based
on contour similarity: (a) input image, (b) extracted contour,
(c) retrieved images in descending contour similarity.

Some indicative shape classification results are included in
Table 1. The normalized counterparts of contours ‘1’ and ‘2’
were compared on the basis of three simple metrics, namely
Euclidean distance of (i) the respective point sets, (ii) the
estimated Fourier descriptors and (iii) the modified Fourier
descriptors proposed in [8]. As it was intuitively expected, all
three metrics prove to be indicative of the normalized curve
resemblance. Finally, the proposed algorithm’s performance was
successfully tested for content-based retrieval purposes based on
contour similarity on a small database containing 50 still images

of five visually distinct object classes; namely, airplanes, cars,
fish, hammers, glasses. In Figure 6, retrieval results are
illustrated for an input image containing an airplane. It must be
pointed out that by utilizing only the object contour attribute, a
fish could yield higher resemblance to an F-15 aircraft than a
Stealth aircraft would. Other image attributes such as color and
texture should thus be included in an integrated content-based
retrieval system.

7. Conclusion

Using the curve normalization procedure presented in this
paper, it is possible to obtain an affine-invariant curve
representation without any actual loss of information. The
procedure can be applied as a pre-processing step to any shape
representation, classification or recognition technique, since it
decouples affine-invariant description from feature extraction
and pattern matching. This is verified by employing a number of
curve similarity measures in the context of content-based
retrieval from image and video databases. The proposed
technique is experimentally shown to be considerably robust to
noise and shape deformations. Moreover, since its computational
cost is negligible, it can be integrated into any real-time system
for content-based retrieval or even video coding.
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